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Abstract

A new 2nd order accurate numerical method on non-body-fitting grids is proposed for solving the variable coefficient

elliptic equation in disjoint subdomains X± separated by interfaces C. The variable coefficients, the source term, and

hence the solution itself and its derivatives may be discontinuous across the interfaces. Jump conditions in solution

and its co-normal derivative at interface are prescribed. Instead of smooth, the interfaces are only required to be Lips-

chitz continuous as submanifold. A weak formulation is developed, the existence, uniqueness and regularity of the solu-

tions are studied. The numerical method is derived by discretizing the weak formulation. The method is different from

traditional finite element methods. Extensive numerical experiments are presented and show that the method is 2nd

order accurate in solution and 1st order accurate in its gradient in L1 norm if the interface is C2 and solutions are

C2 on the closures of the subdomains. The method can handle the problems when the solutions and/or the interfaces

are weaker than C2. For example, u 2 H2(X±), C is Lipschitz continuous and their singularities coincide, see Example 18

in Section 4. The accuracies of the method under various circumstances are listed in Table 19.
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1. Introduction

The ‘‘immersed boundary’’ method [13,14] uses a numerical approximation of d-function which smears

out the solution on a thin finite band around the interface C. In [15], the ‘‘immersed boundary’’ method was
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combined with the level set method resulting in a first order numerical method that is simple to implement

even in multiple spatial dimensions. However, for both methods, the numerical smearing at the interface

forces continuity in solution at the interface regardless of the interface condition [u] = a, where a might

not be zero.

In [10,11], a fast method for solving Laplace�s equations on irregular regions with smooth boundaries
was introduced. By using Fredholm integral equation of the second kind, solutions can be extended to a

rectangular region. Since solutions are harmonic, Fredholm integral equations can be used again to capture

the jump conditions in solution and its normal derivative, [u] 6¼ 0 and [un] = 0. Then these jump conditions

are used to evaluate discrete Laplacian, and then fast Poisson solver on a regular region can be applied with

2nd or higher order accuracy.

In [5], the ‘‘immersed interface’’ method was presented. The method achieves a second order accuracy by

incorporating the interface conditions into the finite difference stencil in a way that preserves the interface

conditions in both solution and its co-normal derivative, [u] 6¼ 0 and [bun] 6¼ 0. The corresponding linear
system is sparse but not symmetric or positive definite. A fast iterative method [6] conjuncted with ‘‘im-

mersed interface’’ method has been developed for constant coefficient problems with interface conditions,

and achieves 2nd order accuracy.

In [1], a finite element method was developed for solving such a problem with the interface conditions

[u] = 0 and [bun] 6¼ 0. Interfaces are aligned with cell boundaries. The 2nd order accuracy was obtained

in an energy norm. Nearly the 2nd order of accuracy was obtained in L2 norm.

In [7], another finite element method was developed for solving the problem with the interface conditions

[u] = 0 and [bun] 6¼ 0. Non-body-fitting Cartesian grids are used, and then associated uniform triangulations
are added on. Interfaces are not necessarily aligned with cell boundaries. Numerical evidence shows that its

conforming version achieves 2nd order accuracy in L1 norm, and higher than first order for its non-con-

forming version.

The boundary condition capturing method [8] uses the Ghost fluid method (GFM) [2] to capture the

boundary conditions. The GFM is robust and simple to implement, so is the resulting boundary condition

capturing method. The boundary condition capturing method is implemented using a standard finite dif-

ference discretization on a non-body-fitting Cartesian grid, making it simple to apply in multi-dimensions,

including three spatial dimensions. Furthermore, the coefficient matrix of the associated linear system is the
standard symmetric positive definite matrix for the variable coefficient Poisson equation in the absence of

interfaces allowing for straightforward application of standard ‘‘black box’’ solvers. The boundary condi-

tion capturing method has been speeded up by a multi-grid method [16]. The convergence proof of the

method is provided in [9]. In [9], a weak formulation of the problem was studied. The boundary condition

capturing method can be obtained from discretizing the weak formulation. The convergence proof follows

naturally. The boundary condition capturing method can solve the elliptic equation with interface condi-

tions [u] 6¼ 0 and [bun] 6¼ 0 in multi-dimensions (including 2 dimensions and 3 dimensions), however the

boundary condition capturing method is only first order accurate. For a similar problem, a Poisson equa-
tion with Dirichlet interface conditions (instead of jump conditions) on the irregular interface, the bound-

ary condition capturing method is extended [3] by Gibou and Fedkiw, etc. (by using GFM [2]) to 2nd order

accuracy in L1 and L2 norms. The resulting linear system of the 2nd order accurate method is symmetric,

which can readily be inverted with a number of fast methods.

In this paper, inspired by the boundary condition capturing method [8] and the weak formulation de-

rived in [9]. The weak formulation is extended to include the case that the boundary and the subdomains�
boundaries are only required to be Lipschitz continuous as submanifold. A numerical method is proposed

by discretizing the weak formulation on a non-body-fitting grid. The method is capable of solving the ellip-
tic equation with variable coefficients and non-homogeneous interface conditions [u] 6¼ 0 and [bun] 6¼ 0, and

is capable of dealing with the case that the boundary and the subdomains� boundaries are only Lipschitz

continuous. Extensive numerical experiments are presented and show that the method is 2nd order accurate
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in solution and 1st order accurate in its gradients in L1 norm if the interface is C2 and solutions are C2 on

the closures of the subdomains. The method can handle the problems when the solutions and/or the inter-

faces are weaker than C2. For example, u 2 H2(X±), C is Lipschitz continuous and their singularities coin-

cide, see Example 18 in Section 4. The accuracies of the method under various circumstances are listed in

Table 19.
2. Equations and weak formulation

Consider an open bounded domain X � Rd . Let C be an interface of co-dimension d � 1, which divides

X into disjoint open subdomains, X� and X+, hence X = X� [ X+ [ C. Assume that the boundary oX and

the boundary of each subdomain oX± are Lipschitz continuous as submanifold. Since oX± are Lipschitz

continuous, so is C. A unit normal vector of C can be defined a.e. on C and points from X� to X+, see Sec-
tion 1.5 in [4].

We seek solutions of the variable coefficient elliptic equation away from the interface C given by
r � ðbðxÞruðxÞÞ ¼ f ðxÞ; x 2 X n C; ð2:1aÞ

in which x = (x1, . . ., xd) denotes the spatial variables and $ is the gradient operator. The coefficient b(x) is
assumed to be a symmetric, uniformly elliptic and bounded d · d matrix, the components of which are con-

tinuously differentiable on the closure of each disjoint subdomain, X� and X+, but they may be discontin-
uous across the interface C. The uniformly ellipticity and boundedness of b(x) is in the sense that there are

two positive constants 0 < m 6 M < +1 such that mI 6 b(x) 6 MI for "x 2 X, where I stands for the

d · d identity matrix. The right-hand side f(x) is assumed to lie in L2(X).

Given functions a and b along the interface C, we prescribe the jump conditions
u½ �CðxÞ � uþðxÞ � u�ðxÞ ¼ aðxÞ;
ðbuÞn
� �

C
ðxÞ � ðbuÞþn ðxÞ � ðbuÞ�n ðxÞ ¼ bðxÞ;

(
x 2 C; ð2:1bÞ
with the notation (bu)n = n Æ b$u. The ‘‘±’’ superscripts refer to limits taken from within the subdomains

X±.

Finally, we prescribe boundary conditions
uðxÞ ¼ gðxÞ; x 2 oX ð2:1cÞ

for a given function g on the boundary oX.

In [9], a weak formulation of the problem has been obtained in the case that the boundary oX and the

interface C are smooth, and the interface C does not intersect with the boundary oX. Here we extend the

weak formulation a bit to include the case that the boundary oX and subdomains� boundaries oX± are only

Lipschitz continuous instead of smooth, and the interface C is allowed to intersect with the boundary oX.

We are going to use the usual Sobolev spaces H 1
0ðXÞ and H1(X). We use the usual inner product for

H1(X). For H 1
0ðXÞ, instead of the usual inner product we choose one which is better suited to our problem:
B½u; v� ¼
Z

Xþ
bru � rvþ

Z
X�

bru � rv: ð2:2Þ
This induces a norm on H 1
0ðXÞ which is equivalent to the usual one, thanks to the Poincaré inequality

and the uniformly ellipticity and boundedness of b(x) on X.

Let be any closed Lipschitz continuous hyper-surface of dimension d � 1 in X, where the overline de-
notes the closure of a set. Let R denote the restriction operator fromH1(X) to L2(). This restriction operator

R is well defined and is a bounded map, because is closed Lipschitz continuous (see Theorem 2.4.2 in [12])
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and C1ðXÞ is dense in H1(X). Throughout this section, we shall always assume that our interface data a and

b are the restrictions of functions ã and ~b 2 H 1ðXÞ on oX� and then limited on C, respectively. That is on C,
a ¼ RoX�ð~aÞ and b ¼ RoX�ð~bÞ: ð2:3Þ

We shall always assume that our boundary data g can be obtained by the following way: Assume that

there exist a function ~c 2 H 1ðXÞ and g is given as, on oX,
g ¼
RoXð~c� ~aÞ; on oX \ oX�;

RoXð~cÞ; on oX n oX�:

�
ð2:4Þ
This (2.4) could be thought as a compatibility condition between a and g. To simplify the notation, from

now on we will drop the tildes.

We will construct a unique solution of the problem in the class
Hða; cÞ ¼ fu : u� cþ avðX�Þ 2 H 1
0ðXÞg: ð2:5Þ
If u 2 H(a,c), then [u]C = a and ujoX = g. Note that H 1
0ðXÞ can be identified with H(0,0).

Definition 2.1. A function u 2 H(a,c) is a weak solution of (2.1a)–(2.1c), if v ¼ u� cþ avðX�Þ 2 H1
0ðXÞ

satisfies
�B½v;w� ¼ F ðwÞ ð2:6aÞ

for all w 2 H 1

0ðXÞ, where
B½v;w� ¼
Z

Xþ
brv � rw þ

Z
X�

brv � rw and

F ðwÞ ¼
Z

X
fw þ

Z
X

brc � rw �
Z

X�
bra � rw þ

Z
C
bw: ð2:6bÞ
Or equivalently

Definition 2.2. A function u 2 H(a,c) is a weak solution of (2.1a)–(2.1c), if u satisfies, for all w 2 H1
0ðXÞ,
�
Z

Xþ
bru � rw þ

Z
X�

bru � rw

� �
¼
Z

X
fw þ

Z
C
bw: ð2:7Þ
A classical solution of (2.1a)–(2.1c), ujX� 2 C2ðX�Þ, is necessarily a weak solution. Because all the sub-
domains� boundaries oX± are Lipschitz continuous, the integration by parts are legal in each subdomain,

X±, see Theorem 1.5.3.1 in [4].
Theorem 2.1. If f 2 L2(X), and a, b, and c 2 H1(X), then there exists a unique weak solution of (2.6a) and
(2.6b) in H(a,c).

Proof. The left-hand side (2.6b) of (2.6a) is a symmetric, bounded and elliptic bilinear form on H 1
0ðXÞ. The

boundedness and the ellipticity are ensured by the fact that b(x) is a symmetric, uniformly elliptic and

bounded matrix in X. It is straightforward to see that the first three terms of F(w) in (2.6b) are bounded

linear functionals on H 1
0ðXÞ. Since w = 0 on oX, the last term of F(w) in (2.6b)

R
Cbw ¼

R
oX�bw. Because

of the boundedness of the restriction map RoX� , the last term of F(w) in (2.6b), �Cbw, is a bounded linear

functional on H 1
0ðXÞ, so is the F(w) (2.6b) of (2.6a). By the Lax–Milgram Lemma, there exists a unique

v 2 H 1
0ðXÞ (so a unique weak solution u ¼ vþ c� avðX�Þ 2 Hða; cÞ) such that �B[v,w] = F(w), for all

w 2 H 1
0ðXÞ.
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Remark 1. a, b and c are assume to beH1(X). The solution u is independent of the values of a and b away from

C, and the values of c away from oX. Assume there are two sets of data {a1,b1,c1} and {a2,b2,c2}, and they

match in the following way: a1 = a2 and b1 = b2 on C, and �c1 þ a1vðX�Þ ¼ �c2 þ a2vðX�Þ ¼ �g on oX.

Let u1 ¼ v1 þ c1 � a1vðX�Þ and u2 ¼ v2 þ c2 � a2vðX�Þ be two weak solutions corresponding to {a1,b1,c1}

and {a2,b2,c2}, respectively, where v1; v2 2 H 1
0ðXÞ. ða2 � a1ÞvðX�Þ is a H1 function in X�, a2 � a1 = 0 on C,

and ða2 � a1ÞvðX�Þ ¼ 0 onC [ X+. Since the boundary oX and the subdomains� boundaries oX± are Lipschitz

continuous, ða2 � a1ÞvðX�Þ is a H1 function in X. Thus u1 � u2 ¼ ðv1 � v2Þ þ ðc1 � c2Þ � ða1 � a2ÞvðX�Þ is a
H1 function in X. Since u1 = u2 = g on oX, u1 � u2 2 H 1

0ðXÞ. It is easy to see that u1 � u2 2 H 1
0ðXÞ satisfies

�
R

X�brðu1 � u2Þ � rw �
R

Xþbrðu1 � u2Þ � rw ¼ 0, for any w 2 H 1
0ðXÞ. Therefore u1 = u2.
3. Numerical method

For ease of discussion in this section, and accuracy testing in the next section, we assume that a, b and c

are smooth on the closure of X. We also assume that b and f are smooth on the closure of each X+ and X�,

but they may be discontinuous across the interface C. However oX, oX� and oX+ are kept to be Lipschitz
continuous. We assume that there is a Lipschitz continuous and piecewise smooth level-set function on X,

which C = {/ = 0}, X� = {/ < 0} and X+ = {/ > 0}. A unit vector n ¼ r/
jr/j can be obtained on X, which is a

unit normal vector of C at C pointing from X� to X+.

3.1. Grid and interpolation

For simplicity, in this paper, we restrict ourselves to the special case of a rectangular domain X = (xmin,

xmax) · (ymin,ymax) in the plane, and b is scalar. Given positive integers I and J, set Dx = (xmax � xmin)/I and
Dy = (ymax � ymin)/J. We define a uniform Cartesian grid {(xi,yj)} = {(xmin + iDx,ymin + jDy)} for

i = 0, . . ., I and j = 0, . . ., J. Each (xi,yj) is called a grid point. A grid point is called a boundary point if

i = 0, I or j = 0, J; otherwise an interior point. The grid size is defined as h = max(Dx,Dy) > 0.

Two sets of grid functions are needed and denoted by
H 1;h ¼ fxh ¼ ðxi;jÞ : 06 i6 I ; 06 j6 Jg; and ð3:1aÞ

H 1;h
0 ¼ fxh ¼ ðxi;jÞ 2 H 1;h : xi;j ¼ 0 if i ¼ 0; I or j ¼ 0; Jg: ð3:1bÞ
For each rectangular region [xi,xi+1] · [yj,yj+1], we cut it into two pieces of right triangular regions: one

is bounded by x = xi, y = yj and y ¼ yjþ1�yj
xi�xiþ1

ðx� xiþ1Þ þ yj, and the other is bounded by x = xi+1, y = yj+1

and y ¼ yjþ1�yj
xi�xiþ1

ðx� xiþ1Þ þ yj. Collect all those triangular regions, we obtain a uniform triangulation Th:

X ¼
S

K2ThK. See Fig. 1. We can also choose the hypotenuse to be y ¼ yjþ1�yj
xiþ1�xi

ðx� xiÞ þ yj, and get another

uniform triangulation from the same Cartesian grid. There is no conceptual difference of our method on
these two triangulations.

If /(xi,yj) 6 0, we count the grid point (xi,yj) as in X�; otherwise in X+. We call an edge (an edge of a

triangle in the triangulation) an interface edge if two of its ends (vertexes of triangles in the triangulation)

belong to different subdomains; or otherwise a regular edge.

We call a cell K an interface cell if its vertices�s belong to different subdomains, and clearly the interface

goes through the interface cell K. In the interface cell, we write K = K+ ¨ K�. K+ and K� are separated by a

straight line segment, denoted by Ch
K . Two end points of the line segment Ch

K are located on the interface C
and their locations can be calculated by the linear interpolations of the discrete level-set functions /h = {/
(xi,yj)}. The vertices�s of K

+ are located in X+ ¨ C and the vertexes of K� are located in X� ¨ C. K+ and K�



Fig. 1. A uniform triangulation.
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are approximations of the regions of K \ X+ and K \ X�, respectively. We call a cell K a regular cell if all its

vertexes belong to the same subdomain, either X+ or X�. For a regular cell, we also write K = K+ ¨ K�,

where K� = {} (empty set) if all vertexes of K are in X+, and K+ = {} (empty set) if all vertexes of K are

in X�. Clearly Ch
K ¼ fg(empty set) in a regular cell, and K+ and K� are approximations of the regions

K \ X+ and K \ X�, respectively. We use jK+j and jK�j to represent the areas of K+ and K�, respectively.

Remark 2. The Ch
K is a good approximation of C ˙ K for the C1 or smoother interfaces, see Examples 1–6,

10–15. The Ch
K is not a good approximation of C ˙ K for the Lipschitz continuous interfaces in general, see

Examples 7, 8, 16, 17, and 18, unless all kinks are on the edges of triangles of the triangulation, see Example

9.

Two extension operators are needed. The first one is T h : H 1;h
0 ! H 1

0ðXÞ. For any wh 2 H 1;h
0 , Th(wh) is a

standard continuous piecewise linear function, which is a linear function in every triangular cell and Th(wh)

matches wh on grid points. Clearly such function set, denoted by H 1;h
0 , is a finite dimensional subspace of

H 1
0ðXÞ.
The second extension operator Uh is constructed as follows. For any uh 2 H1,h with uh = gh at boundary

points, Uh(uh) is a piecewise linear function and matches uh on grid points. It is a linear function in each

regular cell, just like the first extension operator Uh(uh) = Th(uh) in regular cell. In each interface cell, it con-

sists of two pieces of linear functions, one is on K+ and the other is on K�. The location of its discontinuity

in the interface cell is the straight line segment Ch
K . Note that two end points of the line segment are located

on the interface C, and hence the interface condition [u] = a could be and is enforced exactly at these two

end points. In each interface cell, the interface condition [b$u Æ n] = b is enforced with the value b at the

middle point of Ch
K . Clearly such a function is not continuous in general, neither the set of such functions

a linear space. We denote the set of such functions as H 1;h
a;c , which should be thought as an approximation of

the solution class H(a,c) (2.5) plus the restriction of [bun] = b. Similar versions of such extension can be

found in the literature [7,8]. In order to use this extension, we need the following lemma.

Lemma 6.1. "uh 2 H1,h, Uh(uh) can be constructed uniquely, provided Th, /, a and b are given (The proof is
provided in Appendix A).

Since linear interpolations are used in approximating interfaces and solutions, the order of accuracy of

the method is expected to be 2nd order in some norm or, the ‘‘best’’ hopeful, the 2nd order in L1 norm.

3.2. Discrete weak formulation

Under the current setting, we discretize the weak formulation (2.7) as follows:

Method 3.1. Find a discrete function uh 2 H1,h such that
uh ¼ gh on boundary points ð3:2aÞ
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and for all wh 2 H 1;h
0 ,
�
X
K2Th

Z
Kþ

brUhðuhÞ � rT hðwhÞ þ
Z
K�

brUhðuhÞ � rT hðwhÞ
� �

¼
X
K2Th

Z
Kþ

fT hðwhÞ þ
Z
K�

fT hðwhÞ þ
Z

Ch
K

bT hðwhÞ
 !

: ð3:2bÞ
Note that u = g on the boundary is the same as u� cþ avðx�Þ ¼ 0 on the boundary.

Remark 3. Our method uses weak formulations, as finite element methods do. However the solution set

H 1;h
a;c is not a linear space, which is different from traditional finite element methods.

H 1;h
0 is a finite dimensional linear space and its dimension is the number of interior grid points. We con-

struct its base as follows. For m = 1, . . ., I � 1 and n = 1, . . ., J � 1, let wh
m;n ¼ fdi;mdj;n : i ¼ 0; . . . ; I ;

j ¼ 0; . . . ; Jg 2 H 1;h
0 where di,m = 1, if i = m and di, m = 0, if i 6¼ m. Hence our Method 3.1 can be rewritten

as

Method 3.2. Find a discrete function uh = {ui,j} 2 H1,h such that
uh ¼ gh on the boundary points ð3:3aÞ

and for every discrete base function wh

m;n of H
1;h
0 ,
�
X
K2Th

Z
Kþ

brUhðuhÞ � rT hðwh
m;nÞ þ

Z
K�

brUhðuhÞ � rT hðwh
m;nÞ

� �

¼
X
K2Th

Z
Kþ

fT hðwh
m;nÞ þ

Z
K�

fT hðwh
m;nÞ þ

Z
Ch
K

bT hðwh
m;nÞ

 !
: ð3:3bÞ
Remark 4. Let Th be any irregular ‘‘triangulations’’ in multi-dimensions. Let H1,h and H 1;h
0 be proper grid

function spaces in multi-dimensions. Let Uh and Th be corresponding extensions in multi-dimensions.

Method 3.2 also works on irregular ‘‘triangulations’’ in any space dimensions. Uniform ‘‘triangulations’’,
which result from uniform Cartesian grids, are simpler and less expensive compared to irregular ‘‘triangu-

lations’’. Since the method uses non-body-fitting grids and captures discontinuities at interfaces so well (2nd

order accurate in L1 norm), the expected disadvantage in resolutions at and near interfaces of non-body-

fitting uniform ‘‘triangulations’’ compared to body-fitting irregular ‘‘triangulations’’ is significantly

reduced. Therefore we propose the method using non-body-fitting irregular ‘‘triangulations’’ and uniform

‘‘triangulations’’, so that potential users can have their choices.

Remark 5. Because the method uses non-body-fitting ‘‘triangulations’’, the method could use irregular
‘‘triangulations’’ or uniform ‘‘triangulations’’. For methods using body-fitting ‘‘triangulations’’, irregular

‘‘triangulations’’ are required and uniform ‘‘triangulations’’ can not be used in general. Method using

body-fitting grids have another drawback. If the interfaces move, costly grid regenerations are required

as time goes.

Remark 6. The method proposed here is independent of the values of c away from oX or the values of a

away from C. It does depend on the values of b near C, because Ch
K approximates and in general is not equal

to C ˙ K. So do the numerical solutions. However the weak solution is independent of the values of b away

from C and the numerical solutions converge to the weak solution. Extensive numerical experiments are
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presented and show that the method is 2nd order accurate in solution and 1st order accurate in its gradients

in L1 norm if the interface is C2 and solutions are C2 on the closures of subdomains. The method can han-

dle the problems when the solutions and/or the interfaces are weaker than C2. For example, u 2 H2(X±), C
is Lipschitz continuous and their singularities coincide, see Example 18 in Section 4. The accuracies of the

method under various circumstances are listed in Table 19. Therefore the dependence of the numerical solu-
tions on the data is acceptable. Potential readers and/or users could try to find optimal data b, which is

beyond the scope of this paper.
4. Numerical experiments

Consider the problem
r � ðbruÞ ¼ f ; in X�;

u½ � ¼ a; on C;

bun½ � ¼ b; on C;

u ¼ g; on oX;

8>>><
>>>:
on the rectangular domain X = (xmin,xmax) · (ymin,ymax). C is an interface and prescribed by the zero level-

set {(x,y) 2 Xj/(x,y) = 0} of a level-set function /(x,y). The unit normal vector of C is n ¼ r/
jr/j pointing

from X� = {(x,y) 2 Xj/(x,y) 6 0} to X+ = {(x,y) 2 Xj/(x,y)æ}.
In all numerical experiments below, the level-set function /(x,y), the coefficients b±(x,y) and the

solutions
ðuðx; yÞ ¼ uþðx; yÞ; Xþ;

u�ðx; yÞ; X�

�

are given. Hence f = $ Æ (b$u), a = u+ � u� and b ¼ bþuþn � b�u�n can be derived on the whole domain X. g
is obtained by the proper Dirichlet boundary condition, since the solutions are given.

Sequences of uniform Cartesian grids are used Xk = {(xi,yj)jxi = xmin + i dxk, yj = ymin + j dyk,

i = 0, . . ., Ik, j = 0, . . ., Jk}. dxk = (xmax � xmin)/I
k is the step-size in x direction and Ik + 1 is the number

of grid points in x direction. dyk = (ymax � ymin)/J
k is the step-size in y direction and Jk + 1 is the number

of grid points in y direction.

The interface might hit grid points, which may cause inaccuracy in dealing with a situation of zero over

zero. To avoid this, set /(xi,yj) = ��, if j/(xi,yj)j < � (=10�8Dx in all calculations). For simplicity reason, in

each triangular cell K, set b+ to be the b value at the center of K+, and b� the b value at the center of K�.
They approximate 1

jKþj
R
Kþb and 1

jK�j
R
K�b within enough accuracy. To evaluate

R
KþfT hðwh

mnÞ, first cut K
+

into two triangles if K+ is not a triangle, then on each triangle, use a 2nd order accurate numerical quad-

rature. Evaluate
R
K�fT hðwh

mnÞ similarly. Use the 2nd order accurate midpoint rule to evaluate
R

Ch
K
bT hðwh

mnÞ.
All errors in solutions are measured in L1 norm in the whole domain X. All errors in gradient of solu-

tions are measured in L1 norm away from interfaces.

4.1. Smooth interfaces and smooth solutions

In all experiments of this subsection, all interfaces are C1, all solutions are C1ðX�Þ and the domains are

(�1,1) · (�1,1). Two different sequences of grids are used to check if the method is insensitive to the grids.

All experiments in this subsection show that the method is insensitive to the grids if the interfaces and solu-
tions are smooth.
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Example 1. The level-set functions /, the coefficients b± and the solution u± are given as follows:
/1 ¼ x2 þ y2 � 0:25 or /2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5;

bþ ¼ sinðxþ yÞ þ 2; b� ¼ cosðxþ yÞ þ 2;

uþ ¼ lnðx2 þ y2Þ; u� ¼ sinðxþ yÞ:
Fig. 2 shows the numerical solution of the method using 321 number of points in both x and y directions.

Upper (with / = /1 = x2 + y2 � 0.25) and lower (with / ¼ /2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5) halves of the Table 1

shows that the method achieves 2nd order accuracy in solutions and first order accuracy in its gradients

on two different sets of grids. The method is not sensitive to (1) the forms of level-set functions or (2)

the grids.

Example 2. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ x2 þ y2 � 0:25;

bþ ¼ x2 � y2 þ 3; b� ¼ 1000ðxy þ 3Þ;
uþ ¼ 1� x2 � y2; u� ¼ x2 þ y2 þ 2:
Fig. 3 shows the numerical solution of the method using 321 number of points in both x and y directions.

The difficulty of the example is that b+/b� � 1/1000. Table 2 shows that the method achieves 2nd order

accuracy in solutions and first order accuracy in its gradient on two different sets of grids. The method

is not sensitive to the grids.

Example 3. The level-set function /, the coefficients b± and the solution u± are given as follows:
Fig. 2. The method is NOT sensitive to the forms of level-set functions or grids.



Table 1

Upper half for / = /1 = x2 + y2 � 0.25 and lower half for / ¼ /2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5

/ # of pts in x, y Err in U Order Err in $U Order

/ = /1 40, 40 2.30e�3 1.39e�2

80, 80 5.54e�4 2.06 5.85e�3 1.25

160, 160 1.36e�4 2.02 2.22e�3 1.40

320, 320 3.64e�5 1.90 1.00e�3 1.14

41, 39 2.28e�3 1.40e�2

81, 79 5.56e�4 2.03 6.03e�3 1.22

161, 159 1.39e�4 2.00 2.32e�3 1.38

321, 319 3.66e�5 1.92 1.03e�3 1.17

/ = /2 40, 40 1.79e�3 1.39e�2

80, 80 4.83e�4 1.88 5.81e�3 1.26

160, 160 1.26e�4 1.94 2.30e�3 1.34

320, 320 3.27e�5 1.94 1.03e�3 1.16

41, 39 1.89e�3 1.43e�2

81, 79 5.04e�4 1.91 6.19e�3 1.20

161, 159 1.32e�4 1.93 2.33e�3 1.41

321, 319 3.38e�5 1.97 1.07e�3 1.12

Fig. 3. Difficulty: The ratio b+/b� is very small.
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/ ¼ x2 þ y2 � 0:25;

ðaÞ bþ ¼ 103; b� ¼ 1;

ðbÞ bþ ¼ 1; b� ¼ 103;

ðcÞ bþ ¼ 106; b� ¼ 1;

ðdÞ bþ ¼ 1; b� ¼ 106;

uþ ¼ ra

bþ þ 1

b� � 1

bþ

� �
ra
0; u� ¼ ra

b� ;



Table 2

2nd order in u and 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

40, 40 5.54e�1 3.92e�0

80, 80 1.45e�1 1.93 1.34e�0 1.55

160, 160 3.19e�2 2.18 6.43e�1 1.06

320, 320 8.94e�3 1.84 2.84e�1 1.18

41, 39 4.91e�1 3.92e�0

81, 79 1.37e�1 1.84 1.57e�0 1.32

161, 159 3.84e�2 1.83 5.59e�1 1.49

321, 319 9.04e�3 2.09 2.98e�1 0.91
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where a = 3, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, and r0 = 0.5, see the example in [7]. Fig. 4 shows the numerical solution of the

method in solving case (c) using 513 number of points in both x and y directions. The difficulty of the exam-

ple is that b+/b� � 10+3 (case (a)), 10�3 (case (b)), 10+6 (case (c)) or 10�6 (case (d)), which are either very

large or small. Table 3 shows that the method achieves 2nd order accuracy in solutions and first order accu-

racy in its gradient in all four cases. The errors in all four cases are of the same magnitude, which means the

method is not very sensitive to b±.

Example 4. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ x2 þ y2 � 0:25;

bþ ¼ b; b� ¼ r2 þ 1;

uþ ¼ 1=4þ
r4

2
� 1

32

b
þ
r2 � 1

4

b
þ C

b
logð2rÞ u� ¼ r2;
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, see the example in [5]. Two cases are studied here: (a) b = 10 and C = 0.1; (b) b = �3

and C = 0.1. Note that in the case (b) b+ = �3 < 0, the problem is not formally an elliptic problem (but

could be converted to be an elliptic problem). Fig. 5 shows the numerical solutions of the method in solving

case (a) and case (b) using 321 number of points in both x and y directions. The difficulty of the example is
Fig. 4. Difficulty: The ratio b+/b� is very small.



Table 3

2nd order in u and 1st order in $u

Cases # of pts in x, y Err in U Order Err in $U Order

case (a) b� = 1 b+ = 103 65, 65 4.96e�4 1.93e�3

129, 129 1.46e�4 1.76 5.98e�4 1.69

257, 257 3.92e�5 1.90 2.35e�4 1.35

513, 513 1.00e�5 1.97 1.06e�4 1.15

case (b) b� = 103 b+ = 1 65, 65 6.19e�4 3.10e�3

129, 129 1.42e�4 2.14 9.59e�4 1.69

257, 257 3.82e�5 1.89 3.72e�4 1.37

513, 513 9.32e�6 2.04 1.43e�4 1.38

case (c) b� = 1 b+ = 106 65, 65 8.96e�4 2.29e�3

129, 129 2.13e�4 2.07 7.92e�4 1.53

257, 257 6.20e�5 1.78 4.34e�4 0.87

513, 513 1.59e�5 1.96 2.67e�4 0.70

case (d) b� = 106 b+ = 1 65, 65 6.71e�4 3.88e�3

129, 129 1.93e�4 1.80 1.33e�3 1.54

257, 257 5.02e�5 1.94 5.61e�4 1.25

513, 513 1.26e�5 1.99 2.67e�4 1.07
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that the problem is not formally elliptic in case (b), since b+ = �3 < 0. Table 4 shows that the method

achieves 2nd order accuracy in solutions and first order accuracy in its gradient in case (a).

Example 5. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ ðx� 0:02
ffiffiffi
5

p
Þ2 þ ðy � 0:02

ffiffiffi
5

p
Þ2 � ð0:5þ 0:2 sinð5hÞÞ2;

with
xðhÞ ¼ 0:02

ffiffiffi
5

p
þ ð0:5þ 0:2 sinð5hÞÞ cosðhÞ;

yðhÞ ¼ 0:02
ffiffiffi
5

p
þ ð0:5þ 0:2 sinð5hÞÞ sinðhÞ;

(
h 2 ½0; 2pÞ;

bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;
uþ ¼ 5� 5x2 � 5y2; u� ¼ 7x2 þ 7y2 þ 6:
The difficulty of the example is that the interface has complicated geometry. Fig. 6 shows the numerical

solution of the method using 321 number of points both in x and y directions. Table 5 shows that the

method achieves 2nd order accuracy in solutions and 1st order accuracy in its gradients on two different
sets of grids. The method is not sensitive to the grids.

Example 6. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ x2 � y � 1;

bþ ¼ xy þ 2; b� ¼ x2 � y2 þ 3;

uþ ¼ 4� x2 � y2; u� ¼ x2 þ y2:
Also note that the interface is tangential to the boundary oX at (0,1) point, and it intersects with the

boundary oX at (�1,0) and (1,0) at certain nonzero angles. The difficulty of the example is that the interface

is tangential to the boundary and intersects with the boundary at certain nonzero angles. Fig. 7 shows the



Fig. 5. Upper part is case (a); Lower part is case (b), which has b+ = �3 < 0.

Table 4

2nd order in u and 1st order in $u in case (a)

# of pts in x, y Err in U Order Err in $U Order

21, 21 1.27e�3 2.24e�3

41, 41 3.13e�4 2.02 6.36e�4 1.82

81, 81 7.17e�5 2.13 2.03e�4 1.65

161, 161 1.82e�5 1.98 6.94e�5 1.55

321, 321 4.42e�6 2.04 2.86e�5 1.28
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numerical solution of the method using 321 number of points both in x and y directions. Table 6 shows that

the method still achieves 2nd order accuracy in solutions and about 1st order accuracy in its gradients on

two different sets of grids. The method is not sensitive to the grids.



Fig. 6. Difficulty: more complicated geometry of the interface.

Table 5

2nd order in u and 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

40, 40 3.18e�2 1.48e�1

80, 80 9.02e�3 1.82 1.32e�1 0.17

160, 160 2.08e�3 2.12 4.79e�2 1.46

320, 320 5.55e�4 1.91 2.05e�2 1.22

41, 39 2.75e�2 2.73e�1

81, 79 9.28e�3 1.57 1.61e�1 0.76

161, 159 2.54e�3 1.87 4.19e�2 1.94

321, 319 5.67e�4 2.16 2.72e�2 0.62
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4.2. Lipschitz continuous interface and smooth solutions

In all experiments of this subsection, all interfaces are only Lipschitz continuous or worse, solutions are

C1ðX�Þ and the domains are (�1,1) · (�1,1).

Recall that the interface in the interface cell K is approximated by a straight line segment Ch
K , which

is a good approximation if there is no kink located inside of any cell, and is not a good approximation

if the interface has a kink in side of one cell. It is accurate enough to achieve 2nd order accuracy in L1

for the extension Uh and hence the method, provided that there is only one smooth piece of interface in
each cell K, i.e., all kinks are located on the edges of cells. Our numerical experiments below confirm

that. On the other hand, if there is one interface cell consisting more than one smooth piece of inter-

face, i.e., the kink is inside of the cell, the order of accuracy of the method will degrade, as shown

below. However the numerical experiments suggest that the numerical solutions converge. This is the

1st convergent method in the literature on the problem (2.1a)–(2.1c) with Lipschitz continuous

interfaces.



Fig. 7. Difficulty: C is smooth but is tangential to oX and intersects with oX with non-zero angles.

Table 6

2nd order in u and 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

40, 40 4.88e�4 2.70e�3

80, 80 1.25e�4 1.96 1.11e�3 1.28

160, 160 3.40e�5 1.88 7.02e�4 0.66

320, 320 8.99e�6 1.92 4.59e�4 0.61

41, 39 5.05e�4 2.95e�3

81, 79 1.35e�4 1.90 1.20e�3 1.30

161, 159 3.51e�5 1.94 5.88e�4 1.03

321, 319 9.05e�6 1.96 2.89e�4 1.02
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Example 7. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ ð3ðx2 þ y2Þ � xÞ2 � x2 � y2 ðcardioidÞ;
bþ ¼ x2 � y2 þ 3; b� ¼ xy þ 3;

uþ ¼ 1� x2 � y2; u� ¼ x2 þ y2 þ 2:
Note that the interface is not even Lipschitz continuous and the singular point of the interface is the cusp

point (0,0). The difficulty is that the interface is not even Lipschitz continuous. Fig. 8 shows the numerical

solution of the method using 321 number of points both in x and y directions. The numerical accuracy tests
seems to suggest that 1.8th order accurate convergence in solutions and about 1st order in $u on two dif-

ferent sets of grids, see Table 7.

Example 8. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ ðsinð5pxÞ � yÞð� sinð5pyÞ � xÞ;
bþ ¼ xy þ 2; b� ¼ x2 � y2 þ 3;

uþ ¼ 4� x2 � y2; u� ¼ x2 þ y2:



Fig. 8. C is a cardioid and is not Lipschitz continuous at the cusp point, (0,0), of the cardioid.

Table 7

About 1.8th order in u and about 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

40, 40 4.08e�3 2.02e�2

80, 80 7.90e�4 2.36 8.00e�3 1.34

160, 160 2.14e�4 1.88 4.05e�3 0.98

320, 320 1.48e�4 0.53 3.46e�3 0.23

640, 640 7.77e�5 2.70 2.45e�3 0.50

41, 39 3.60e�3 1.94e�2

81, 79 9.85e�4 1.87 6.52e�3 1.57

161, 159 2.96e�4 1.73 3.56e�3 0.87

321, 319 6.77e�5 2.13 1.54e�3 1.21

641, 639 2.43e�5 1.48 6.31e�4 1.29
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The difficulty of the example is that there are many kinks on the interface and some of their coordinates

are irrational. There is no way to construct a uniform grid to make sure that every triangle cell has only one

smooth piece interface. That is the reason why the method is only 0.8th order accurate, see Table 8. Also see

Fig. 9 for the numerical solution of the method using 321 number of points both in x and y directions.

Example 9. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ maxðminð/1;/2;/3Þ;/4;/5;/6;minð/7;/8ÞÞ;

/1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 � 0:752 � 0:152

q
;

/2 ¼ ðx� 0:75Þ2 þ y2 � 0:152;

/3 ¼ ðxþ 0:75Þ2 þ y2 � 0:152;

/4 ¼ � 0:1
0:12

ðx� 0:2Þ2 � 0:12
0:1

ðy � 0:22Þ2 þ 0:12 � 0:1;
/5 ¼ � 0:1

0:12
ðxþ 0:2Þ2 � 0:12

0:1
ðy � 0:22Þ2 þ 0:12 � 0:1;

/6 ¼ �x2 � ðy þ 0:08Þ2 þ 0:122;

/7 ¼ �x2 � ðy þ 0:625Þ2 þ 0:4252;

/8 ¼ �x2 � ðy þ 0:25Þ2 þ 0:22;

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;
uþ ¼ 5� 5x2 � 5y2; u� ¼ 7x2 þ 7y2 þ 1:



Fig. 9. C has many kinks and intersects with the outer boundary oX.

Table 8

0.8th order in u

# of pts in x, y Err in U Order

40, 40 2.38e�1

80, 80 7.88e�2 1.59

160, 160 5.43e�2 0.54

320, 320 2.57e�2 1.08

41, 39 1.24e�1

81, 79 6.75e�2 0.88

161, 159 4.56e�2 0.57

321, 319 2.25e�2 1.02
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Note that the interfaces have kinks around ears and mouth, and the mouth and the nose are tangential at

point (0,�0.2), which is not Lipschitz continuous (see Fig. 10). Fig. 10 shows the numerical solution using

321 number of points both in x and y directions. Table 9 shows the results of numerical accuracy tests.

Because all kinks and the touch point (0,�0.2) are on grid points, and hence every interface cell has only

one smooth piece interface. Our method achieve 2nd order accuracy in solutions and more than 1st order

accuracy in its gradients. The cases that the kinks of interfaces are not all on the cell boundaries, are studied

in the Section 4.4.
4.3. Piecewise C2, C1 Solutions with C2, C1 Interfaces

Two interfaces are used:
/ ¼ y � ð2xþ x2Þ; xþ y > 0;

y � ðxþ x2 þ sinð5xÞ=5Þ; xþ y6 0

�
ð4:1aÞ
and
/ ¼
y � ð2xÞ; xþ y > 0;

y � ð2xþ x2Þ; xþ y6 0:

�
ð4:1bÞ



Fig. 10. C has many kinks at the corners of ears, the corners of mouth, and the touching point of the nose and the mouth.

Table 9

2nd order in u and more than 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

40, 40 6.06e�2 3.09e�1

80, 80 1.64e�2 1.89 1.16e�1 1.41

160, 160 4.34e�3 1.92 4.71e�2 1.30

320, 320 1.15e�3 1.92 1.81e�2 1.40
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The 1st interface (4.1a) is C2 but not C3 and its non-C3 point is (0,0). The 2nd interface (4.1b) is C1 but

not C2 and its non-C2 point is (0,0).

Two solutions are used:
uþ ¼ 2; u� ¼
sinðxþ yÞ; xþ y6 0;

xþ y; xþ y > 0;

�
ð4:2aÞ

uþ ¼ 2; u� ¼
sinðxþ yÞ þ cosðxþ yÞ; xþ y6 0;

xþ y þ 1; xþ y > 0:

�
ð4:2bÞ
For ease of referring, the solution in (4.2a) is called piecewise C2 in the following sense:
u 2 C2ðX�Þ; 62 C3ðX�Þ with bounded 3rd derivatives. Its non-C3 points in X� are {(x,�x)jx > 0}. For the

same reason, the solution in (4.2b) is called piecewise C1 in the following sense: u 2 C1ðX�Þ; 62 C2ðX�Þ with
bounded 2nd derivatives. Its non-C2 points in X� are {(x,�x)jx > 0}.

One domain is used: (�1,p � 2) · (�1,p � 2). A sequence of uniform Cartesian grids on this domain is

used:
Xk ¼ ðxki ; ykj Þ
xki ¼ �1þ iDxk; i ¼ 0; . . . ; 2k10þ 1;

ykj ¼ �1þ jDyk; j ¼ 0; . . . ; 2k10� 1;

�����
)(

ð4:3Þ
where Dxk ¼ p�1

2k10þ1
and Dyk ¼ p�1

2k10�1
. Note that the non-smooth point (0,0) of the interfaces will not locate

on the edges of triangles of the triangulations resulting from the sequence of uniform Cartesian grids.
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Example 10. The level-set function /, the coefficients b± and the solution u± are given as follows:
Fig. 1

{(x,�x

Table

2nd or

# of p

41,39

81,79

161, 15

321, 31

641, 63
/ ¼
y � ð2xþ x2Þ; xþ y > 0;

y � ðxþ x2 þ sinð5xÞ=5Þ; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;

uþ ¼ 2; u� ¼
sinðxþ yÞ; xþ y6 0;

xþ y; xþ y > 0:

�

Note that the interface is C2 but not C3 and the solution u is piecewise C2. Fig. 11 shows the numerical
solution using X5 of (4.3). Table 10 shows that the method achieves 2nd order accuracy in solutions and 1st

order accuracy in its gradient.

Example 11. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼ y � ð2xþ x2Þ; xþ y > 0;

y � ðxþ x2 þ sinð5xÞ=5Þ; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;

uþ ¼ 2; u� ¼
sinðxþ yÞ þ cosðxþ yÞ; xþ y6 0;

xþ y þ 1; xþ y > 0:

�

1. Interface is C2 but not C3 and u� is piecewise C2. The non-C3 point (0,0) of the interface is on the non-C3 points,

)jx > 0}, of the solution.

10

der in u and 1st order in $u

ts in x, y Err in U Order Err in $U Order

7.05e�4 5.03e�3

2.51e�4 1.49 2.30e�3 1.13

9 6.16e�5 2.03 9.15e�4 1.33

9 1.76e�5 1.81 4.46e�4 1.04

9 3.98e�6 1.93 1.91e�4 1.10
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Note that the interface C is C2 but not C3 and the solution u is C1 but not C2 on X�. Fig. 12 shows the

numerical solution using X5 of (4.3). Table 11 shows that the method achieves 1st order accuracy in solu-

tions and about 0.8th order accuracy in its gradient.

Example 12. The level-set function /, the coefficients b± and the solution u± are given as follows:
Fig. 1

{(x,�x

Table

1st ord

# of p

41,39

81,79

161,15

321,31

641,63
/ ¼
y � ð2xÞ; xþ y > 0;

y � ð2xþ x2Þ; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;

uþ ¼ 2; u� ¼
sinðxþ yÞ; xþ y6 0;

xþ y; xþ y > 0:

�

Note that the interface is C1 but not C2 and the solution u is C2 but not C3 on X�. Fig. 13 shows the

numerical solution using X5 grid of (4.3). Table 12 shows that the method achieves 2nd order accuracy

in solutions and 1st order accuracy in its gradients.
2. Interface is C2 but not C3 and u� is piecewise C1. The non-C3 point (0,0) of the interface is on the non-C2 points,

)jx > 0}, of the solution.

11

er in u and about 0.8th order in $u

ts in x, y Err in U Order Err in $U Order

1.54e�3 1.78e�2

7.75e�4 0.99 9.30e�3 0.94

9 5.06e�4 0.62 5.46e�3 0.77

9 2.02e�4 1.32 3.62e�3 0.59

9 7.72e�5 1.00 1.99e�3 0.76



Fig. 13. Interface is C1 but not C2 and u� is piecewise C2. The non-C2 point (0,0) of the interface is on the non-C3 points,

{(x,�x)jx > 0}, of the solution.

Table 12

About 2nd order in u and 1st order in $u

# of pts in x, y Err in U Order Err in $U Order

41, 39 2.74e�4 1.42e�3

81, 79 7.89e�5 1.80 5.49e�4 1.37

161, 159 2.29e�5 1.78 3.70e�4 0.57

321, 319 6.17e�6 1.89 1.40e�4 1.40

641, 639 1.71e�6 1.85 7.60e�5 0.88
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Example 13. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼
y � ð2xÞ; xþ y > 0;

y � ð2xþ x2Þ; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;

uþ ¼ 2; u� ¼
sinðxþ yÞ þ cosðxþ yÞ; xþ y6 0;

xþ y þ 1; xþ y > 0:

�

Note that the interface C is C1 but not C2 and the solution u is C1 but not C2 on X�. Fig. 14 shows the

numerical solution using X5 grid of (4.3). Table 13 shows that the method achieves 1st order accuracy in

solutions and about 0.8th order accuracy in its gradients.
4.4. Piecewise H2 solutions and/or Lipschitz continuous interfaces

In the previous subsection, the interfaces used are either C2 (but not C3) or C1 (but not C2) and the solu-

tions used is either piecewise C2 or piecewise C1.



Fig. 14. Interface is C1 but not C2 and u� is piecewise C1. The non-C2 point (0,0) of the interface is on the non-C2 points,

{(x,�x)jx > 0}, of the solution.

Table 13

1st order in u and 0.8th order in $u

# of pts in x, y Err in U Order Err in $U Order

41, 39 1.35e�3 1.79e�2

81, 79 7.80e�4 0.79 9.35e�3 0.94

161, 159 5.01e�4 0.64 5.45e�3 0.78

321, 319 2.03e�4 1.30 3.62e�3 0.59

641, 639 9.64e�5 1.07 2.02e�3 0.84
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In this subsection, a Lipschitz continuous interface is used:
/ ¼
y � 2x xþ y > 0;

y þ 1
2
x xþ y6 0:

�
ð4:4Þ
Clearly its singular point (kink) is the origin (0,0).

In the existence and uniqueness Theorem 2.1, the right hand side f = $ Æ (b$u) is only required to be

L2(X) and could blow up at some point in X. In this subsection, a solution
u ¼
uþ ¼ 8; Xþ;

u� ¼ ðx2 þ y2Þ
5
6 þ sinðxþ yÞ; X�

(
ð4:5Þ
is used. For ease of referring, the solution in (4.5) is called piecewise H2 in the following sense:

u� 2 H 2ðX�Þ;2 C1ðX�Þ with unbounded 2nd derivatives. Its singular point, where its 2nd derivatives blow

up, is the origin (0,0). Since b� 2 C1ðX�Þ, the resulting f = $ Æ (b$u) 2 L2(X) but blow up at the origin. An

extra caution is needed: never evaluate f at its exact blow-up point.

All numerical experiments in this subsection possess a singular point either from the interface (4.4) and/

or from the solution (4.5). At the singular cell, in which the interface has a singular point (kink) inside of the
cell, integrations

R
K� and

R
Ch
K
in the Method 3.2 are not good approximations of their associated ones in

the weak formulation (2.7), since C has a kink inside K and Ch
K is a straight line segment inside K. At the

singular cell, in which solutions u� 62 C2ðX�Þ have a singular point and so is the f, the numerical quadrature

used in evaluating
R
KfT

hðwh
m;nÞ in the Method 3.2 loses the 2nd order accuracy, so does the extension Uh(uh)
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in the Method 3.2. The order of accuracy of those approximations depends on the relative locations of the

singular points in the singular cells. Hence the method under arbitrary sequences of grids will not show the

order of accuracy in a consistent way.

Special but rather general sequences of uniform Cartesian grids are used, which require the relative loca-

tions of the singular points are the same or almost same in the singular cells of all grids within the same
sequences. For ease of discussion, one dimensional case is considered first. Let X = (xmin,xmax) be the do-

main with finite number of singular points: xs1 ; . . . ; xsL 2 X. Assume the singular points are at relatively ra-

tional locations, i.e.,
xsl�xmin

xmax�xmin
are rational:

xsl�xmin

xmax�xmin
¼ pl

ql
for l = 1, . . ., L, where p and q are positive integers,

p < q, p and q have no common factor other than 1, relevantly. A sequence {Xm} of uniform Cartesian grids

can be constructed, in which each grid Xm is
Xm ¼ fxmi ¼ xmin þ iDxm; i ¼ 0; 1; . . . ; Im þ 1g;
where Dxm ¼ xmax�xmin

Imþ1
, Im = rmkQ, r > 1, k > 0, Q > 0 are integers, and Q is the smallest multiple of all ql. It is

easy to check that
xsl�xmpl

ql
Im

Dxm ¼ xsl�xmin

xmax�xmin
holds for every Xm in the sequence {Xm}. Note that

xsl�xmin

xmax�xmin
are inde-

pendent from m. Therefore the relative location of each singular points, xsl , in the singular cell

½xpl
ql
Im
; xpl

ql
Imþ1� of Xm is the same for all m.

For two dimensional case, let X = (xmin,xmax) · (ymin,ymax) be the domain with finite number of singular
points: ðxs1 ; ys1Þ; . . . ; ðxsL ; ysLÞ 2 X. Assume the singular points are at relatively rational locations, i.e.,
xsl � xmin

xmax � xmin

¼
px;l
qx;l

;
ysl � ymin

ymax � ymin

¼
py;l
qy;l

ð4:6Þ
for l = 1, . . ., L, where p and q are positive integers, p < q and p and q have no common factor other than 1,

relevantly. Two sequences, {Xx,m} and {Xy,n}, of one dimensional uniform Cartesian grids can be con-

structed in each direction:
Xx;m ¼ fxmi ¼ xmin þ iDxm; i ¼ 0; 1; . . . ; Im þ 1g;
Xy;n ¼ fynj ¼ ymin þ jDyn; j ¼ 0; 1; . . . ; Jn þ 1g;
where Dxm ¼ xmax�xmin

Imþ1
;Dyn ¼ ymax�ymin

Jnþ1
, Im = rmkxQx, Jn = rnkyQy, r > 1, kx > 0, ky > 0, Qx and Qy are integers,

and Qx is the smallest multiple of qx,1, . . ., qx,L and Qy is the smallest multiple of qy,1, . . ., qy,L. The sequence
of uniform Cartesian grids in two dimension {Xm,n} can be constructed, in which
Xm;n ¼ Xx;m � Xy;n ¼ fðxmi ; ynj Þ j xmi 2 Xx;m; ynj 2 Xy;ng: ð4:7Þ

Three sequences of uniform Cartesian grids are used in all five numerical experiments in this subsection.

First two of them are in the form of (4.7) and the third one is not:
Xk;k ¼ ðxki ; ykj Þ
xki ¼ �1þ iDxk; i ¼ 0; . . . ; 2k10þ 1

ykj ¼ �1þ jDyk; j ¼ 0; . . . ; 2k5þ 1

�����
( )

;

where Dxk ¼ 4

2k20þ 1
and Dyk ¼ 2

2k10þ 1
ð4:8aÞ
for the domain (�1,3) · (�1,1)
Xk;k ¼ ðxki ; ykj Þ
xki ¼ �2p

5
þ iDxk; i ¼ 0; . . . ; 2k20þ 1

ykj ¼ �2p
5
þ jDyk; j ¼ 0; . . . ; 2k20þ 1

�����
( )

;

where Dxk ¼ p

2k20þ 1
and Dyk ¼ p

2k20þ 1
ð4:8bÞ
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for the domain ð�2p
5
; 3p
5
Þ � ð�2p

5
; 3p
5
Þ, and
Xk;k ¼ ðxki ; ykj Þ
xki ¼ �2þ iDxk; i ¼ 0; . . . ; 2k

ykj ¼ �1þ jDyk; j ¼ 0; . . . ; 2k

�����
( )

; where Dxk ¼
3p
4
þ 2

2k
and Dyk ¼

4p
5
þ 1

2k
ð4:8cÞ
for the domain ð�1; 4p
5
Þ � ð�1; 3p

4
Þ.

Clearly the relative location of the singular point, the origin (0,0), is rational for the first two sequences

(4.8a) and (4.8b) but irrational for the third one (4.8c).

Remark 7.

(1) In all five experiments in this subsection, the method is shown to be convergent under the grids (4.8c),

although varying orders of accuracy have been observed. The grids (4.8a) and (4.8b) are used to see the

orders of accuracy in a consistent way.

(2) The relative locations of singular points may be irrational, i.e. at least one of
xsl�xmin

xmax�xmin
and

ysl�ymin

ymax�ymin
is not

rational number. However any irrational number is a limit of a sequence of rational numbers, hence

can be approximated by a rational number. Therefore the grids (4.8c) is used in all five experiments.

(3) If the smallest multiple of all q is too large, a smaller integer is recommended, as long as the relative

locations of the singular points do not vary too much.

(4) The sequences of grids (4.7) can handle the cases that there are finite number of singular points.

Example 14. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼
y � ð2xþ x2Þ; xþ y > 0;

y � ðxþ x2 þ sinð5xÞ=5Þ; xþ y6 0;

(

bþ ¼ 1; b� ¼ 2þ sinðxþ yÞ;

uþ ¼ 8; u� ¼ ðx2 þ y2Þ
5
6 þ sinðxþ yÞ:
Note that the interface C is C2 but not C3 and the solution u is piecewise H2. Note that

u� 2 H 2ðX�Þ;2 C1ðX�Þ and u� 62 C2ðX�Þ. u and hence f have the singular point at the origin, which coin-

cides with the interface non-C3 point. Fig. 15 shows the numerical solution of the method using X5,5 of
(4.8a) on the domain (�1,3) · (�1,1). Table 14 shows that the method achieves about 1.6th order accuracy

in solutions and about 0.65th order accuracy in its gradient. Since u 2 H 2ðX�Þ;2 C1ðX�Þ but u 62 C2ðX�Þ,
the linear interpolations Uh(uh) do not guarantee 2nd order accuracy in approximating the true solutions u.

Varying orders of accuracy are observed under the grids (4.8c) since the singular point is not at relatively

same locations in singular cells of the grids in the sequence (4.8c).

Example 15. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼
y � 2x; xþ y > 0;

y � ð2xþ x2Þ; xþ y6 0;

�
bþ ¼ 1; b� ¼ 2þ sinðxþ yÞ;

uþ ¼ 8; u� ¼ ðx2 þ y2Þ
5
6 þ sinðxþ yÞ:



Fig. 15. Interface is C2 but not C3, its non-C3 point is (0,0). u is piecewise H2 and has a singular point at (0,0), which coincides with the

interface non-C3.

Table 14

About 1.6th order in u and about 0.65th order in $u

Domain # of pts in x, y Err in U Order Err in $U Order

(�1,3) · (�1,1) 81, 41 1.13e�3 1.22e�1

161, 81 3.69e�4 1.61 7.86e�2 0.63

321, 161 1.22e�4 1.60 5.01e�2 0.65

641, 321 4.02e�5 1.60 3.17e�2 0.66

ð�2p
5 ; 3p5 Þ � ð�2p

5 ; 3p5 Þ 41, 41 2.09e�3 1.85e�1

81, 81 6.71e�4 1.64 1.20e�1 0.62

161, 161 2.18e�4 1.62 7.61e�2 0.66

321, 321 7.11e�5 1.62 4.81e�2 0.66

ð�2; 3p
4
Þ � ð�1; 4p

5
Þ 128, 128 5.71e�4 1.27e�1

256, 256 1.65e�4 1.79 6.42e�2 0.98

512, 512 4.33e�5 1.93 4.18e�2 0.62
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Note that the interface C is C1 but not C2 and its non-C2 point locates at (0,0). Also the solution u is

piecewise H2(X±) and has a singular point (0,0), which coincides with the interface non-C2 point. Fig. 16

shows the numerical solution of the method using X5,5 of (4.8a) on the domain (�1,3) · (�1,1). Table 15

shows that the method achieves about 1.6th order accuracy in solutions and around 0.65th order accu-

racy in the gradient of the solutions. Since u is piecewise H2 but not C2 on X�, the linear interpolations

Uh(uh) do not guarantee 2nd order accuracy in approximating the true solutions u. Therefore the method

degenerates from 2nd order accuracy. Varying orders of accuracy are observed under the grids (4.8c),

since the singular point is not at relatively same locations in singular cells of the every grids in the
sequence (4.8c).



Fig. 16. Interface is C1 but not C2, its non-C2 point is (0,0). u is piecewiseH2 and has a singular point at (0,0), which coincides with the

interface non-C2 point.

Table 15

About 1.6th order in u and about 0.65th order in $u

Domain # of pts in x, y Err in U Order Err in $U Order

(�1,3) · (�1,1) 81, 41 1.11e�3 1.23e�1

161, 81 3.58e�4 1.63 7.92e�2 0.64

321, 161 1.16e�4 1.63 5.03e�2 0.65

641, 321 3.81e�5 1.61 3.18e�2 0.66

ð�2p
5
; 3p
5
Þ � ð�2p

5
; 3p
5
Þ 41, 41 2.10e�3 1.84e�1

81, 81 6.59e�4 1.67 1.19e�1 0.63

161, 161 2.10e�4 1.65 7.57e�2 0.65

321, 321 6.74e�5 1.64 4.79e�2 0.66

ð�2; 3p
4
Þ � ð�1; 4p

5
Þ 128,128 4.00e�4 1.30e�1

256, 256 1.43e�4 1.48 6.45e�2 1.01

512, 512 3.84e�5 1.90 4.21e�2 0.62
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Example 16. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼
y � 2x; xþ y > 0;

y þ 1
2
x; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7;

uþ ¼ 8; u� ¼
sinðxþ yÞ; xþ y6 0;

xþ y; xþ y > 0:

�

Note that the interface C is Lipschitz continuous but not C1 and and it has a kink at (0,0). The solution u
is piecewise C2 and the kink of the interface is on the non-C3 points, {(x,�x)jx < 0}, of the solution. Fig. 17

shows the numerical solution using X5,5 of (4.8a) on the domain (�1,3) · (�1,1). Table 16 shows that the



Fig. 17. Interface is Lipschitz continuous and it has a kink at (0,0). u is piecewise C2. The kink (0,0) of the interface is on the non-C3

points, {(x,�x)jx > 0}, of the solution.

Table 16

About 0.8th order in u

Domain # of pts in x, y Err in u Order Err in $u

(�1,3) · (�1,1) 81,41 1.74e�2 1.14e�1

161, 81 1.01e�2 0.78 1.14e�1

321, 161 5.72e�3 0.82 1.15e�1

641, 321 3.19e�3 0.84 1.15e�1

ð� 2p
5
; 3p
5
Þ � ð� 2p

5
; 3p
5
Þ 41,41 2.17e�2 9.15e�2

81,81 1.27e�2 0.77 9.41e�2

161, 161 7.21e�3 0.82 9.47e�2

321, 321 4.04e�3 0.84 9.49e�2

ð�2; 3p
4
Þ � ð�1; 4p

5
Þ 128, 128 7.26e�2 1.15e�0

256, 256 6.44e�2 0.17 2.29e�0

512, 512 8.82e�3 2.87 5.60e�1
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method achieves about 0.8th order accuracy in solutions on the whole domain. Varying orders of accuracy

are observed under the grids (4.8c), since the singular point is not at relatively same locations in singular

cells of the grids in the sequence (4.8c).

Example 17. The level-set function /, the coefficients b± and the solution u± are given as follows:
/ ¼
y � 2x; xþ y > 0;

y þ 1
2
x; xþ y6 0;

�
bþ ¼ ðxy þ 2Þ=5; b� ¼ ðx2 � y2 þ 3Þ=7

uþ ¼ 8; u� ¼
sinðxþ yÞ þ cosðxþ yÞ; xþ y6 0;

xþ y þ 1; xþ y > 0:

�
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Note that the interface C is Lipschitz continuous but not C1 and it has a kink at (0,0). The solution is C1

but not C2 on X� and the kink of the interface is on the non-C2 of the solution. Fig. 18 shows the numerical

solution using X5,5 of (4.8a) on the domain (�1,3) · (�1,1). Table 17 shows that the method achieves about

0.8th order accuracy in solutions on the whole domain. Varying orders of accuracy are observed under the

grids (4.8c), since the singular point is not at relatively same locations in singular cells of the grids in the
sequence (4.8c).
Fig. 18. Interface is Lipschitz continuous and has a kink at (0,0). The solution u is piecewise C1. The kink (0,0) of the interface is on the

non-C2 points, {(x,�x)jx > 0}, of the solution.

Table 17

About 0.8th order in u

Domain # of pts in x, y Err in u Order Err in $u

(�1,3) · (�1,1) 41,21 3.35e�2 1.58e�1

81,41 1.95e�2 0.78 1.38e�1

161,81 1.11e�2 0.81 1.27e�1

321,161 6.23e�3 0.83 1.21e�1

641,321 3.45e�3 0.85 1.18e�1

ð� 2p
5
; 3p
5
Þ � ð� 2p

5
; 3p
5
Þ 41,41 2.30e�2 1.31e�1

81,81 1.32e�2 0.80 1.14e�1

161,161 7.47e�3 0.82 1.05e�1

321,321 4.17e�3 0.84 9.98e�2

ð�2; 3p4 Þ � ð�1; 4p5 Þ 128, 128 7.02e�2 1.11e�0

256, 256 4.20e�2 0.74 1.34e�0

512, 512 8.82e�3 2.25 6.00e�1
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Example 18. The level-set function /, the coefficients b± and the solution u± are given as follows:
Fig. 19

with th

Table

About

Doma

(�1,3)

ð�2p
5
; 3p
5

ð�2; 3p4
/ ¼
y � 2x; xþ y > 0;

y þ 1
2
x; xþ y6 0;

�
bþ ¼ 1; b� ¼ 2þ sinðxþ yÞ;

uþ ¼ 8; u� ¼ ðx2 þ y2Þ
5
6 þ sinðxþ yÞ:
Note that the interface C is only Lipschitz continuous and has a singular point at (0,0). Also the solution

u is H2(X±) and has a singular point (0,0), which coincides with the interface singular point. Fig. 19 shows

the numerical solution of the method using X5,5 of (4.8a) on the domain (�1,3) · (�1,1). Table 18 shows
. Interface is Lipschitz continuous and has a kink at (0,0). u is piecewise H2 and has a singular point at (0,0), which coincides

e interface singular point (0,0).

18

0.8th order in u

in # of pts in x, y Err in u Order Err in $u

· (�1,1) 41, 21 4.12e�2 1.42e�1

81, 41 2.30e�2 0.84 1.25e�1

161, 81 1.28e�2 0.85 1.15e�1

321, 161 7.02e�3 0.86 1.08e�1

641, 321 3.85e�3 0.87 1.04e�1

Þ � ð�2p
5
; 3p
5
Þ 41, 41 3.02e�2 1.18e�1

81, 81 1.66e�2 0.86 1.02e�1

161, 161 9.04e�3 0.88 9.20e�2

321, 321 4.92e�3 0.88 8.81e�2

Þ � ð�1; 4p5 Þ 128, 128 3.15e�2 1.83e�1

256, 256 1.66e�2 0.92 1.74e�1

512, 512 5.95e�4 4.80 8.87e�3



Table 19

Conclusion of numerical experiments

C is C2 C is C1 C is Lipschitz continuous

u(x,t) is C2 2nd order in u and 1st order in $u 2nd order in u and 1st order in $u 0.8th order in u

u(x,t) is C1 1st order in u and 0.8th order in $u 1st order in u and 0.8th order in $u 0.8th order in u

u(x,t) is H2 1.6th order in u and 0.65th order in $u 1.6th order in u and 0.65th order in $u 0.8th order in u
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that the method achieves about 0.8th order accuracy in solutions. Compared with the previous examples we
observe that the kink of the interface, instead of the singularity of the solution, produces the dominant

effect to bring down the order of accuracy. Varying orders of accuracy are observed under the grids

(4.8c), since the singular point is not at relatively same locations in singular cells of the grids in the sequence

(4.8c).

The conclusion of the numerical experiments are listed in the Table 19. Note that the result for the case

in which the right hand side of the PDE blows up at a point is better than the result for a solution that is

piecewise C1, with bounded 2nd derivative. This is due to the fact that we have a straight line {(x,�x)jx < 0}

on which the latter solution is not C2, while we only have one point (0,0) at which the former solution has

unbounded 2nd derivative and at any other point the solution is C1.
5. Conclusion

In this work, a numerical method is developed to solve an elliptic problem in multi-dimensional space

with variable coefficients, Lipschitz continuous interfaces and non-homogeneous interface conditions

(2.1a)–(2.1c). A weak formulation (2.6a) and (2.6b) of the problem and its the existence, uniqueness and

regularity of the weak solutions are studied, see Theorem 2.1. The method, Method 3.2, is derived from

the weak formulation by a simple but new discretization, which is different from traditional finite element

methods. The method uses non-body-fitting grids, hence irregular or uniform ‘‘triangulation’’ can be used.
Methods using non-body-fitting grids have the advantage of avoiding costly grid regenerations over meth-

ods using body-fitting grids in the case when interfaces move. The method captures crispy sharp resolutions

at interfaces. Extensive numerical experiments are presented and show that the method is 2nd order accu-

rate in solution and 1st order accurate in its gradients in L1 norm if the interface is C2 and solutions are C2

on the closures of the subdomains. The method can handle the problems when the solutions and/or the

interfaces are weaker than C2. For example, u 2 H2(X±), C is Lipschitz continuous and their singularities

coincide, see Example 18 in Section 4. The accuracies of the method under various circumstances are listed

in Table 19.
Acknowledgement

The authors thank Professor Gustavo Ponce, Professor Thomas Sideris and Professor Rugang Ye for

their very helpful discussions.



S. Hou, X.-D. Liu / Journal of Computational Physics 202 (2005) 411–445 441
Appendix A. Proof of Lemma 3.1

There are three typical cases for Uh(uh).

Case 0. If K is a regular triangle, see Fig. A.1. Uh(uh) = Th(uh), i.e.
UhðuhÞ ¼ uðP 1Þ þ
uðP 2Þ � uðP 1Þ

Dx
ðx� xiÞ þ

uðP 3Þ � uðP 1Þ
Dy

ðy � yjÞ: ðA:1Þ
Case 1. If K is an interface triangle, and the interface C cutting through two legs of K, see Fig. A.2, then
UhðuhÞ ¼
uðP 1Þ þ uþx ðx� xiÞ þ uþy ðy � yjÞ; ðx; yÞ 2 Kþ;

uðP 2Þ þ u�x ðx� xi � DxÞ þ ðuðP3Þ�uðP2Þ
Dy þ Dx

Dy u
�
x Þðy � yjÞ; ðx; yÞ 2 K�:

(
ðA:2Þ
Here u�y ¼ uðP3Þ�uðP2Þ
Dy þ Dx

Dy u
�
x . Three interface conditions are enforced as follows:
dxuþx þðDx� dxÞu�x ¼ r1;

ðDx� Dx
Dy dyÞu�x þdyuþy ¼ r2;

�dybþuþx þðdy þ Dx
Dy dxÞb

�u�x �dxbþuþy ¼ r3;

8><
>: ðA:3Þ
Fig. A.1. Case 0: the regular cell.

Fig. A.2. Case 1: the interface cutting through two legs of a triangle.
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where r1 = u(P2) � u(P1) + a(P4), r2 ¼ uðP 2Þ � uðP 1Þ þ uðP3Þ�uðP2Þ
Dy dy þ aðP 5Þ; r3 ¼ �b� uðP3Þ�uðP2Þ

Dy dxþ
bðP 6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dy2

p
. Here bþ ¼ 1

jKþj
R
Kþb and b� ¼ 1

jK�j
R
K�b are the averages of b in K+ and K� regions (In

the numerical experiments, we take b+ to be the b at the center of K+, and b� the b at the center of

K�). Let
A ¼
dx ðDx� dxÞ 0

0 Dx� Dx
Dy dy dy

�dybþ ðdy þ Dx
Dy dxÞb

� �dxbþ

2
64

3
75; A1 ¼

r1 ðDx� dxÞ 0

r2 Dx� Dx
Dy dy dy

r3 ðdy þ Dx
Dy dxÞb

� �dxbþ

2
64

3
75;

A2 ¼
dx r1 0

0 r2 dy

�dybþ r3 �dxbþ

2
64

3
75; A3 ¼

dx ðDx� dxÞ r1
0 Dx� Dx

Dy dy r2

�dybþ ðdy þ Dx
Dy dxÞb

� r3

2
64

3
75:

ðA:4Þ
Clearly
uþx ¼ detðA1Þ= detðAÞ; u�x ¼ detðA2Þ= detðAÞ;

uþy ¼ detðA3Þ= detðAÞ; u�y ¼ uðP 3Þ � uðP 2Þ
Dy

þ Dx
Dy

u�x :
ðA:5Þ
Note that the matrix A consists of information of grid, interface and coefficients b, and is independent

from uh, a or b. Also note that the determinants of matrices A1, A2 and A3 are linear functions of u
h, a and b.

Hence they could be rewritten in the forms of
uþx ¼ cþx;2
uðP 2Þ � uðP 1Þ

Dx
þ cþx;3

uðP 3Þ � uðP 1Þ
Dy

þ cþx;4aðP 4Þ þ cþx;5aðP 5Þ þ cþx;6bðP 6Þ;

u�x ¼ c�x;2
uðP 2Þ � uðP 1Þ

Dx
þ c�x;3

uðP 3Þ � uðP 1Þ
Dy

þ c�x;4aðP 4Þ þ c�x;5aðP 5Þ þ c�x;6bðP 6Þ;

uþy ¼ cþy;2
uðP 2Þ � uðP 1Þ

Dx
þ cþy;3

uðP 3Þ � uðP 1Þ
Dy

þ cþy;4aðP 4Þ þ cþy;5aðP 5Þ þ cþy;6bðP 6Þ;

u�y ¼ c�y;2
uðP 2Þ � uðP 1Þ

Dx
þ c�y;3

uðP 3Þ � uðP 1Þ
Dy

þ c�y;4aðP 4Þ þ c�y;5aðP 5Þ þ c�y;6bðP 6Þ:

ðA:6Þ
Lemma 6.1. All coefficients c in (A.6) are finite and independent from uh, a and b.

Proof. From above discussion, it is easy to see that all coefficients c are independent from uh, a and b.
Below we prove that cþx;3 is finite. The proofs for the other coefficients are similar.
cþx;3 ¼
�ðbþ � b�ÞðDx� dxÞdx dy

bþ ðDx� dxÞdy2 þ Dx
Dy ðDy � dyÞdx2

� 	
þ b� Dx

Dy dx2 dy þ dy2 dx
� 	 : ðA:7Þ
It could be thought as a function of dx and dy. It is smooth on [0,Dx] · [0,Dy] except one point
(dx,dy) = (0,0). It is easy to see that if dx = 0 and dy 6¼ 0, or dx 6¼ 0 and dy = 0, cþx;3 ¼ 0. Now denote

k = dy/dx 2 (0,+1), and rewrite it as
cþx;3 ¼
�ðbþ � b�ÞðDx� dxÞk

þ 2 Dx
� 	

� Dx 2
� 	 : ðA:8Þ
b ðDx� dxÞk þ Dy ðDy � k dxÞ þ b Dy dxk þ dxk
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Let dx goes to zero,
lim
dx! 0; dy¼k dx

cþx;3 ¼
�ðbþ � b�Þk
bþðk2 þ 1Þ

; ðA:9Þ
hence the limit is bounded for any k 2 (0,+1),
lim
dx! 0; dy¼k dx

j cþx;3 j 6
�bþ þ b�

bþ

����
����: ðA:10Þ
Therefore j cþx;3 j is bounded, for any (dx,dy) 2 [0,Dx] · [0,Dy].

Case 2. If K is an interface triangle, and the interface C cutting through one leg and the hypotenuse of K,

see Fig. A.3, then

uðP Þ þ uþðx� x � DxÞ þ uþðy � y Þ; ðx; yÞ 2 Kþ;
(

UhðuhÞ ¼
2 x i y j

uðP 1Þ þ u�x ðx� xiÞ þ uðP3Þ�uðP1Þ
Dy ðy � yjÞ; ðx; yÞ 2 K�:

ðA:11Þ
Three interface conditions are enforced as follows:
ð�dxÞuþx þðdx� DxÞu�x ¼ r1;

� Dx
Dy dyuþx þðDxDy dy � DxÞu�x þdyuþy ¼ r2;

dybþuþx �dyb�u�x þðDxDy dy � dxÞbþuþy ¼ r3;

8><
>: ðA:12Þ
where r1 = u(P1) � u(P2) + a(P4), r2 ¼ uðP 1Þ � uðP 2Þ þ uðP3Þ�uðP1Þ
Dy dy þ aðP 5Þ, and r3 ¼ b� uðP 3Þ�uðP1Þ

Dy

ðDxDy dy � dxÞþ bðP 6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy2 þ ðDxDy dy � dxÞ2

q
.

Let
A ¼
�dx ðdx� DxÞ 0

� Dx
Dy dy ðDxDy dy � DxÞ dy

dybþ �dyb� ðDxDy dy � dxÞbþ

2
64

3
75; A1 ¼

r1 ðdx� DxÞ 0

r2 ðDxDy dy � DxÞ dy

r3 �dyb� ðDxDy dy � dxÞbþ

2
64

3
75;

A2 ¼
�dx r1 0

� Dx
Dy dy r2 dy

dybþ r3 ðDxDy dy � dxÞbþ

2
64

3
75; A3 ¼

�dx ðdx� DxÞ r1
� Dx

Dy dy ðDxDy dy � DxÞ r2

dybþ �dyb� r3

2
64

3
75: ðA:13Þ
Fig. A.3. Case 2: the interface cutting through a leg and a hypotenuse of a triangle.
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Clearly
uþx ¼ detðA1Þ= detðAÞ; u�x ¼ detðA2Þ= detðAÞ; uþy ¼ detðA3Þ= detðAÞ; u�y ¼ uðP 3Þ � uðP 1Þ
Dy

:

ðA:14Þ

Same as in Case 1, the matrix A consists of information of grid, interface and coefficients b, and is inde-

pendent from uh, a or b. The determinants of matrices A1, A2 and A3 are linear functions of uh, a and b.

Hence they could be rewritten in the forms of
uþx ¼ dþ
x;2

uðP 2Þ � uðP 1Þ
Dx

þ dþ
x;3

uðP 3Þ � uðP 1Þ
Dy

þ dþ
x;4aðP 4Þ þ dþ

x;5aðP 5Þ þ dþ
x;6bðP 6Þ;

u�x ¼ d�
x;2

uðP 2Þ � uðP 1Þ
Dx

þ d�
x;3

uðP 3Þ � uðP 1Þ
Dy

þ d�
x;4aðP 4Þ þ d�

x;5aðP 5Þ þ d�
x;6bðP 6Þ;

uþy ¼ dþ
y;2

uðP 2Þ � uðP 1Þ
Dx

þ dþ
y;3

uðP 3Þ � uðP 1Þ
Dy

þ dþ
y;4aðP 4Þ þ dþ

y;5aðP 5Þ þ dþ
y;6bðP 6Þ;

u�y ¼ d�
y;2

uðP 2Þ � uðP 1Þ
Dx

þ d�
y;3

uðP 3Þ � uðP 1Þ
Dy

þ d�
y;4aðP 4Þ þ d�

y;5aðP 5Þ þ d�
y;6bðP 6Þ:

ðA:15Þ
Lemma 6.2. All coefficients d in (A.15) are finite and independent from uh, a and b.

Proof. The proof is the same as the proof of Lemma 6.1, and is omitted here.

From above discussion, we complete the proof of Lemma 6.1 and all coefficients c and d are independent

from uh, a and b.
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